A continuum approach to modelling cell-cell adhesion.

نویسندگان

  • Nicola J Armstrong
  • Kevin J Painter
  • Jonathan A Sherratt
چکیده

Cells adhere to each other through the binding of cell adhesion molecules at the cell surface. This process, known as cell-cell adhesion, is fundamental in many areas of biology, including early embryo development, tissue homeostasis and tumour growth. In this paper we develop a new continuous mathematical model of this phenomenon by considering the movement of cells in response to the adhesive forces generated through binding. We demonstrate that our model predicts the aggregation behaviour of a disassociated adhesive cell population. Further, when the model is extended to represent the interactions between multiple populations, we demonstrate that it is capable of replicating the different types of cell sorting behaviour observed experimentally. The resulting pattern formation is a direct consequence of the relative strengths of self-population and cross-population adhesive bonds in the model. While cell sorting behaviour has been captured previously with discrete approaches, it has not, until now, been observed with a fully continuous model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of solutions of a non-local reaction–diffusion model for adhesion in cell aggregation and cancer invasion

Adhesion of cells to one another and their environment is an important regulator of many biological processes but has proved difficult to incorporate into continuum mathematical models. This paper develops further the new modelling approach proposed by Armstrong et al. (A continuum approach to modelling cell–cell adhesion, J. Theor. Biol. 243: 98–113, 2006). The models studied in the present pa...

متن کامل

Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components

This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via c...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.

Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stoch...

متن کامل

Effect of Hydrostatic Pressure on Pc12 Cell Line

Purpose: The present study was designed to investigate the effect of hydrostatic pressure on cell viability, apoptosis induction, morphology and cell-substrate interactions of PC12 cells. Materials and Methods: PC12 as a neuronal cell line maintained in RPMI 1640 culture medium supplemented with 10% fetal bovine serum. PC12 cells were subjected to hydrostatic pressure. Experimental pressure con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 243 1  شماره 

صفحات  -

تاریخ انتشار 2006